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Separating shear flow past a surface-mounted blunt obstacle
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Abstract. The planar flow of incompressible fluid past a blunt obstacle mounted on a flat (horizontal) fixed solid
surface of infinite extent is examined in the presence of an incident linear velocity profile, modelling the fluid
behaviour close to a small surface roughness for instance. The motion is taken to be steady and laminar. The
obstacle is blunt in the sense that its typical surface slopes are not small, a feature which here always induces
flow separation both upstream and downstream of the obstacle. Computations and nonlinear theory are applied,
together with comparisons. The direct computations of the Navier-Stokes equations, using for example a higher
order upwind-difference scheme, deal with a moderate range of Reynolds numbers up to 200, based on the
obstacle height and the incident uniform shear. In addition the accuracy is necessarily limited as the Reynolds
number increases. The theory is for large Reynolds numbers and is based on viscous-inviscid reasoning, back-
pressure effects from the obstacle and slender-layer separation locally, among other influences. The comparisons
nevertheless yield encouragingly close agreement, for the present computed cases of a vertical flap or a rectangular
block. This is both quantitatively, in terms of the upstream separation and downstream reattachment positions in
particular, and generally, in terms of the separating flow structure, even at the notably moderate Reynolds numbers
covered accurately by the computations.
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1. Introduction

Configurations involving shear flow over a blunt obstacle, mounted on an otherwise flat or
nearly flat surface, are manyfold and have much physical and technological interest. A blunt
or bluff obstacle here is one whose typical surface slopes are of order unity or greater, such
as a flap standing normal to the flat surface, a rectangular block, a forward-facing step or
a hemispherical object. Configurations of practical interest include boundary-layer flow past
roughnesses on airfoils and turbine blades, atmospheric boundary layer motion over hills,
wind over water, the use of trip wires to generate transition to turbulent flow downstream, the
flow past excrescences in pipes or at artery walls, and the Gurney-flap device placed near an
airfoil or blade trailing edge. Some of the theoretical and/or computational studies relevant
to the above configurations and especially to the present research are by Dennis and Smith
[1], Mei and Plotkin [2], Durst and Loy [3] on internal flows, Savinet al. [4] on transition,
Smith and Walton [5] on roughness flows, and Giguèreet al. [6], Smith [7] on the advantages
of a flap device being buried within the trailing-edge boundary layer; but see also the many
references therein on computations, theory and experiments.

Our specific concern is with the case of a blunt obstacle so small and close to the flat
surface that the surrounding fluid motion,i.e. the farfield flow as far as the scale of the obstacle
is concerned, may be viewed as uniform shear flow. The whole motion is taken to be laminar,
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planar and steady, and the fluid to be incompressible and Newtonian, yielding an idealised
setting of course but one which has correspondingly clearer findings, it is hoped, and which is
fundamental to all the practical configurations of interest. Computation and theory are applied
for the determination of the major flow properties and for their basic understanding. The
theory, which is for large Reynolds numbers, is meant to provide extra insight of course but
it also gives particular predictions, for example for the positions of separation upstream and
reattachment downstream of the obstacle, and it helps to guide the all-important numerical
gridding, especially at increasing Reynolds numbers. The quite large-scale computation is
needed at almost all moderate Reynolds numbers and it helps to indicate the range of practical
validity of the theory, how much the flow solution is independent of the precise shape of
obstacle, and so on. The joint approach using computation and theory is very much a hand-in-
hand one. A not dissimilar approach has also been used successfully on occasion in studies of
external flow past a blunt body, without surface mounting, as in many papers on the subject
by Dennis, Sychev, Fornberg, Smith, Chernyshenko and co-workers:e.g.see review in [8,
Chapters 23–25].

Section 2 below describes the flow set-up, for the surface-mounted obstacle in a uniform-
shear flow, at finite Reynolds number based on the typical obstacle height and on the slope
of the incident velocity profile at the flat surface. Computational methodology is presented in
detail in Section 3; compare the local leading-edge and trailing-edge studies by Van de Vooren,
Dijkstra, Veldman in the 1970s (e.g.see [8, Chapters 23–25]). The present computations are
designed especially for obstacles which are vertical flaps or rectangular blocks, although the
accuracy is of course limited. Theory for large Reynolds numbers is given in Section 4, this
being quite distinct from the small-disturbance linear analyses of Stewartson [9], Smith [10]
because in the current setting the physical slopes present are not small and so they demand
nonlinear reasoning. While intuition may at first suggest that, with increasing Reynolds num-
ber, the recirculating eddy upstream of the obstacle should shrink due to inertial effects, the
subsequent action of viscous effects near the upstream surface implies that the eddy must
elongate, for overall smoothness of the separating flow. This is reflected in the prediction of
the separation position (far) upstream, and likewise in the predicted reattachment station (far)
downstream. Moreover, the arguments used generalize, for example to any obstacle shape, and
they simplify certain related ones used previously, enabling the upstream separation point for
instance to be obtained from a single, rapid, forward numerical march. Section 5 shows results
and comparisons between computation and theory. Section 6 provides further comments.

2. The flow configuration

The blunt shaped obstacle of concern is on a fixed surface, is deep inside the surface boundary
layer or other shear flow and is so localized that the surface appears flat and indefinitely
long (thex axis) and the fluid appears to be of semi-infinite extent normally, with uniform
incident shear flow. This implies that the only relevant geometric length scales are those of
the obstacle itself. We take the typical height of the obstacle as the flow’s characteristic length
scalè ∗, which is often comparable with the typical obstacle length anyway for a blunt shape.
Further, as there is no velocity scaleu∗ directly we take the prescribed slopeλ∗ of the incident
velocity profile at the surface multiplied bỳ∗, leavingu∗ = λ∗`∗ as the velocity scale based
on the obstacle height. Nondimensional quantities are then used, so that in Cartesian coordi-
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Figure 1. Sketch of the flow configuration, in nondimensional terms, for a blunt obstacle (smooth or non-smooth)
with

∣∣f ′∣∣ typically of order unity.

nates̀ ∗(x, y) which are streamwise and normal respectively the corresponding fluid velocity
λ∗`∗(u, v) and pressureρ∗λ∗2`∗2p satisfy the continuity and Navier-Stokes equations

∂u

∂x
+ ∂v
∂y
= 0, u

∂u

∂x
+ v ∂u

∂y
= −∂p

∂x
+ Re−1∇2u, (2.1a,b)

u
∂v

∂x
+ v ∂v

∂y
= −∂p

∂y
+ Re−1∇2v. (2.1c)

Here the shear-based Reynolds number Re≡ λ∗`∗2/ν∗ has characteristic values of order unity,
the constantsρ∗, ν∗ denote in turn the density and kinematic viscosity of the incompressible
fluid, and∇2 is the Laplacian∂2/∂x2+∂2/∂y2. The governing Equations (2.1a–c) hold above
the obstacle in the upper half plane. They are subject to the boundary conditions

u = v = 0 at y = f (x), u ∼ y, v→ 0 asx2 + y2→∞, (2.1d,e)

for no slip at the given nondimensional surfacef (x) of the obstacle or flat plate and for the
approach to the specified uniform shear flow in the farfield, respectively. See Figure 1.
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The task is to solve (2.1a-e), then. An alternative to (2.1a) is to use a stream functionψ

defined byu = ∂ψ/∂y, v = −∂ψ/∂x with, say,ψ zero on the obstacle surface, and of course
(2.1b,c) can be combined into the vorticity equation

u
∂ζ

∂x
+ v ∂ζ

∂y
= Re−1∇2ζ, (2.2a)

with

ζ = −∇2ψ (2.2b)

being the unknown scaled vorticity. Again, polar coordinates such that(x, y) = r(cosθ, sinθ)

are also used later. In the absence of any obstaclef (x) is zero and we suppose then that
the uniform shear flow (ψ, u, v, ζ, p) = (1

2y
2, y,0,−1,0) holds everywhere for positive

y. With f (x) present, on the other hand, computations are required in general because of
the nonlinearity associated with blunt shaped obstacles, in contrast with the previous linear
analyses mentioned in the introduction for non-blunt shapes. Computations are considered in
Section 3, followed by theory for large Re values in Section 4.

3. Computational methods

Two separate computational approaches were used on (2.1a–e) and/or (2.2a,b) as described
below. They were applied to the blunt non-smooth obstacles formed by a vertical thin flap (x =
0 for 06 y 6 1) standing normal to the flat horizontal surfacey = 0 or by a rectangular block
placed on the horizontal surface. It has to be acknowledged immediately that the numerical
problem is difficult, due partly to the corners on the obstacles and partly to increasing Re
and its accompanying multiple scales, which limits the general accuracy and resolution. For
that reason and for the sake of comparison we eventually decided to apply the two distinct
computational approaches mentioned. One gave interesting results sooner and this is described
first below in some detail, followed by the second.

In one approach the numerical scheme used consists of the alternating-direction implicit
(ADI) method and a fourth-order accurate compact difference scheme. For this steady problem
the equivalent time coordinate in the differenced Equation (2.2a) for the vorticity is treated as
fictitious with each time step considered equivalent to an iteration. In the ADI scheme each
time step is split into two halves, resulting in two finite-difference equations each of duration
δt/2 whereδt is the time step, used in turn over successive time steps. The first equation is
implicit in thex-direction while the second is implicit in they-direction.

Flows that are dominated by convection as here suffer from numerical instability at high
values of the Reynolds number. To suppress such instability upwind differencing in the con-
vection terms could be employed. The artificial dissipation introduced by the upwind differ-
ence scheme stabilizes the numerical solution at high values of the Reynolds number. The
following quasilinearization is used for the convective terms,[

gux
]n+1 = [g]n[ux]n+1. (3.1)

The superscriptn represents the time step. The spatial derivatives in (3.1) are approximated as[
gux

]
i,j
= gi,j

{
ui+2,j − 2ui+1,j + 9ui,j − 10ui−1.j + 2ui−2,j

}
/(6δx) (3.2a)
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for gi,j positive, and

gi,j
{−2ui+2,j + 10ui+1,j − 9ui,j + 2ui−1,j − ui−2,j

}
/(6δx) (3.2b)

for gi,j negative. The truncation error of this scheme is given by

1

4
(δx)3

[
g
∂4u

∂x4

]
. (3.2c)

The upwinding produces a truncation error proportional to the fourth derivative of the vor-
ticity. This numerical dissipation stabilizes computations at high Reynolds numbers and in
addition does not significantly affect the physical dissipation. The velocities in the convective
terms are calculated using the fourth order accurate Hermitian relations and are given by

ui,j−1 + 4ui,j + ui,j+1 = 3(ψi,j+1 − ψi,j−1)/δy, (3.3a)

vi−1,j + 4vi,j + vi+1,j = −3(ψi+1,j −ψi−1,j )/δx, (3.3b)

respectively.
The vorticity boundary condition on the surface is approximated by a second order accurate

cubic polynomial approximation and is given by

ζi,0 = −(8ψi,1 −ψi,2)/(2(δy)
2). (3.4)

The boundary condition onζ along the obstacle is approximated in a similar manner. It may
be noted that no boundary condition could or should be prescribed directly on the vorticity at
the outer (top) edge of the flap or on the corners of the square obstacle. Following Dennis and
Smith [1], in order to avoid these points, we rotate the axes through an angleπ/4 which leaves
the vorticity transport equation (2.2a) unaltered and then we approximate theζ derivatives as
before.

At every fictitious time step the Poisson equation (2.2b) for the stream function is solved
by a fourth-order accurate compact difference scheme. This fourth-order method considers
as unknowns at each discretized point not only the value of the functiong(i) itself but also
its firstg′(i) and second derivativesg′′(i). The system is closed by considering the following
relationships between the function and its derivatives at three successive discretization points:

g′i−1 + 4g′i + g′i+1 = 3(gi+1 − gi−1)/h+O(h4), (3.5a)

g′′i−1 + 10g′′i + g′′i+1 = 12(gi+1 − 2gi + gi−1)/h
2+O(h4), (3.5b)

whereh represents the spatial step of the discretization. The second-order derivativesg′′(i)
can be expressed as

g′′i = −(g′i+1 − g′i−1)/(2h)+ 2(gi+1 − 2gi + gi−1)/h
2. (3.5c)

This expression is fourth-order accurate. In order to reduce the number of unknowns, the
second-order derivatives can be eliminated from the governing equations through the relation
(3.5c). Besides higher accuracy, another advantage of this method is that it takes into account
the boundary conditions on bothψ and its first-order partial derivatives which are data of the
physical problem. This method is described in detail by Loc and Bouard [11].
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The computational procedure starts by assuming initial values forζi,j andψi,j at all mesh
points. Using the available values of the stream function, the vorticity transport equation is
solved forζi,j . Then utilizing the values ofζi,j , the Poisson equation for the stream function is
solved to updateψi,j . At the end of each time step new estimates ofζi,j andψi,j are obtained
by this process. The procedure is repeated as the computational scheme progresses in time
until a certain relative error criterion, preselected as a condition for convergence, is satisfied.

As rapid changes in the flow take place around the obstacle, we included more densely
packed grid points around the obstacle. Further away from the obstacle grid stretching is
applied, defined by

xi+1 = xi + β(xi − xi−1), (3.6)

whereβ = 5
4. Similar operations are made fory(j). To check on how much the numerical

solution is dependent on the grid size, the grid sizes around the obstacle were made to range
between 0·001× 0·001 and 0·01× 0·01 at selected Reynolds numbers. The effects of grid
sizes on the solution are found to be minimal (see later figure). We found that a grid size 0·005
× 0·005 near the obstacle produces the optimal solution. The fictitious time step was taken as
0·001 originally but was then increased at subsequent timest .

It may be noted that the fourth order accurate compact difference scheme cannot be used
where variable grid sizes are considered. Away from the obstacle, where variable grid sizes are
used, the Poisson equation for stream function is solved through a central difference scheme
along with the successive over relaxation technique.

A second computational approach has also been used on the flow problem. Only prelimi-
nary results from this were available at the time of writing and we hope to report fully on this
separate approach in the near future. For now we note that this approach is based on Dennis
and Hudson’s [12], it is a fourth order scheme and it proves to be both accurate and stable:
see the comparisons in [12] itself. While the results from the second approach are still to be
regarded as tentative so far, and are for the vertical thin flap only, subsequent comparisons in
Section 5 with results from the first approach above are found to be affirmative.

Results are described in Section 5.

4. Theory

The theory presented in this section concerns the flow properties at large Re specifically,
although without doubt small Re is also of interest. It is predicted, and later found, that for
large Re values, and foranyblunt obstacle, the length of upstream influence is markedly large,
as is the upstream separation distance, and the downstream influence length and reattachment
distance are even larger.

The obstacle shape is taken as suitably smooth for now. Non-smooth shapes are addressed
at the end of this section. Some guidance for the theory comes from Smith [13], Smith and
Walton [5], suggesting a beginning onO(1) scaled streamwise lengths.

First, on the actual obstaclef (x) a thin attached boundary layer is produced, with pressure
variations of order unity, followed downstream by a thin separated free shear layer. The latter
adjusts its position(F (x) say) to make the pressure variation almost negligible inside the
accompanying long eddy of recirculating fluid, broadly, over length scalesx of order one,
and in consequence the heightF(x) of the free shear layer tends to a (positive) constant
further downstream, so thatF(∞) > 0. The corresponding pressure and the stream-function
perturbation both tend to−1

2F
2(∞).
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Second, in the outer majority of the flow inviscid forces dominate. So, sufficiently far away,
on a longx scale where the disturbance to the surrounding uniform-shear motion is relatively
small,u − y andv satisfy Laplace’s equation (whereasp satisfiesy∇2p = 2∂p/∂y). The
equation is subject to farfield decay which is to be found and to matching the disturbance of
the stream function,ψ− 1

2y
2, with −1

2F
2(∞) asy decreases towards zero in the downstream

portion of the flow and with zero in the upstream portion. Hence the fundamental decay is
algebraic, being given simply by

u− y ∼ 0r−1 cosθ, (4.1)

for large distancesr, with the constant0 ≡ F 2(∞)/(2π) and with the corresponding stream-
function disturbance being0(θ−π). The above result coincides in fact with the source-like ef-
fect of the obstacle shape combined with the free-shear-layer shape/positioning, which yields
an overall jump in the mass flux over a long streamwise scale, coupled with the Bernoulli
relation for the pressure. In particular, the slip induced from (4.1) near the flat surface decays
as the inverse of distance.

Third, close to the flat surface in the upstream portion of the flow a viscous wall layer
must be provoked. There the velocityu is y + 0(|x|−1), from (4.1), but the viscousy scale
has to be of order Re−1/3 |x|1/3 of course in a uniform shear motion, from the inertial-viscous
balance ofy∂/∂x against Re−1∂2/∂y2. Therefore we equate Re−1/3 |x|1/3 with |x|−1 , in terms
of orders of magnitude, implying the long streamwise length scale|x| ∼ Re1/4 for the viscous-
inviscid interaction that is necessary for nonlinear upstream influence and in particular the
possibility of separation upstream. It follows that in the viscous wall layer the velocity com-
ponents and pressure are Re−1/4U , Re−3/4V, Re−1/2P to leading order, withx, y scaled as
Re1/4X, Re−1/4Y in turn, and the controlling equations from (2.1a–c) become the interactive
boundary-layer system

∂U

∂X
+ ∂V
∂Y
= 0, U

∂U

∂X
+ V ∂U

∂Y
= −P ′(X)+ ∂

2U

∂Y 2
, (4.2a,b)

for the order-one quantitiesU(X, Y ), V (X, Y ), P (X). There is negligible normal pressure
gradient because of (2.1c). The boundary conditions require no slip alongY = 0 for all
negativeX values and

U ∼ Y + 0X−1 asY →∞, (4.2c)

in view of (4.1) holding in the motion outside. Here the constant0 is defined just after (4.1)
and is positive but the imposed displacement in (4.2c) is upward,i.e.U − Y is negative, as
X is negative, thus indicating an increasing tendency towards flow separation asX increases.
The solution of the reduced problem (4.2a–c) starts as a small perturbation from the incident
profileU = Y far upstream at large negativeX and thereafter can be obtained from a single
forward march inX, at least up to separation (flow reversal). Fortunately this reduced problem
can be normalized to one solved numerically by Smith and Walton [5], even though the present
work is a generalization of theirs to allow for the finite ratio of the length of the obstacle to
its width in the present configurations and for the variable eddy heightF(∞) downstream,
as well as being a simplification in respect of the source effect (4.1). Separation is found
to occur atX = −0·142F(∞)3/2. Beyond this station a FLARE (after Flügge-Lotz and
Reyhner) approximation in which the first term in (4.2b) is neglected whereverU is negative
seems to work fairly well as usual numerically, permitting continued forward marching. The
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flow solution continues towardsX = 0−, that is, towards order-one length scales around the
obstacle, developing there an asymptotic grossly separated form in line with the displacement
effect in (4.2c). Thus whereas the outer inviscid response exhibits quite simple decay lasting
over great distances, in (4.1), the near-surface viscous response is rather more intricate, its
perhaps most significant feature being the predicted behaviour

x1 = −0.142(F (∞))3/2Re1/4 (4.3)

of the upstream separation point at large Reynolds numbers.
Fourth, after the increasingly separated motion beyond the station (4.3) joins to the thin-

ner boundary layer on the obstacle itself, as described previously, this thin boundary layer
proceeds downstream through a second smooth separation, on/from the obstacle, to form the
thin free shear layer also mentioned previously. In particular if the height of the real obstacle
is negligible downstream so thatf (∞) is zero then that of the effective obstacle,F(∞), is
nonzero as the free shear layer emerges almost horizontally atop the long eddy far downstream
on the above length scales. Closure of that downstream eddy and a flow-reattachment process
to the surface then take place on the much longer length scale wherex is of order Re, with
the characteristicy scale being of order unity. Accordingly the boundary-layer equations (as
in (4.2a,b)) again describe the process there, given thatu, v, p are expected to scale with the
orders 1, Re−1, 1 in turn, owing to the boundary conditions in (2.1e) (applied as in [14])
and the outer decay in (4.1). The starting profile, however, for the downstream reattachment
process is discontinuous, aty = F(∞), or has discontinuous derivatives, in order to merge
with the incident separated-motion properties further upstream. The flow solution in normal-
ized form can be deduced from Smith and Daniels [14], fortunately, and in particular it gives
the prediction

x2 = 0·076(F (∞))3Re (4.4)

for the downstream reattachment point at large Reynolds numbers. This, while subject to cer-
tain assumptions about the starting profile noted above, actually confirms the earlier arguments
leading to (4.1)–(4.3) on the shorter length scales.

The above points are the major points, and more analytical detail is as in [5],[13] essen-
tially, but the most relevant brief comments here are the following. The argument supposes
that the effective height parameterF(∞) is typically of order unity, whether due to the actual
obstacle heightf (∞) being nonzero or to the long eddy shape downstream. So the reasoning
extends to non-smooth obstacles also, such as a normal (vertical) thin flap or a rectangular
block as in the numerical cases of Sections 3,5, although the theoretical separation from the
obstacle is different then and indeed may be multiple. The scales, by the way, in (4.3),(4.4),
are such that if Re, x, y are based on the eddy height instead of obstacle height then the fac-
torsF(∞) are replaced by unity. Further, the quite long, algebraic, upstream-influence scale
exemplified by (4.3) contrasts with those in Smith [13], Dennis and Smith [1] which are only
logarithmic, the distinction stemming from the slow algebraic decay to the state of uniform
shear as in (4.1). Finally here, similar reasoning may well apply also in three-dimensional
motions under uniform near-surface shear at large Re values.

5. Results and comparisons

The flow past a variety of obstacle shapes has been studied numerically by means of the
methodology described in Section 3. The results shown here are all either for a vertical thin
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Figure 2. Computational results for the flow streamlines at Re= 55,200, for (a,b) the vertical-flap shape and
(c,d) the square-block shape.

flap of nondimensional height 1(= f (0)) or for a square block of nondimensional height 1,
mounted on the horizontal surface.

The main computational results are presented in Figures 2–6, showing the induced pressure
gradients, surface shears, streamlines and other properties. Thus Figure 2 gives the streamline
plots determined at the particular representative values 55 and 200 of the Reynolds number
Re, for the vertical flap and the square block, while Figure 3 gives vorticity curves and velocity
vectors, again for two Re values. In Figure 3(a) the main contour values of the vorticity are
marked except for the most negative values which are−12,−8,−7,−6, −5, and similarly
the most negative vorticity values shown in Figure 3(c) are−10,−5. Figure 4 then shows
the pressure gradients produced along the horizontal surfacey = 0 at Re equal to 100,
and Figure 5 presents the computed results at Re of 100 for the horizontal surface vorticity,
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Figure 2. Continued.

including a study of grid-size effects which suggests that the results are of quite high accuracy
up to that Reynolds number.

Figure 6(a,b) provides plots of the upstream separation and downstream reattachment
positionsx1, x2, versus Re, which are reasonably sensitive measures of the upstream and
downstream eddy features. The results shown are as deduced from the direct computations of
the surface vorticity and from the theory summarized by (4.3), (4.4), for both the vertical-flap
case and the square-block case. Any slight “wiggles” in the computational results in Figure 6
are due to the interpolation used to estimate the values ofx1, x2 numerically; while in the
theory the quantityF(∞) is taken mostly as the obstacle height. We should add that most
of the results shown are from the first computational method described in detail in section 3,
but comparisons between results from both computational approaches used are also presented
in Figures 5(a), 6(a), 6(b) for the case of the flap. Given the clear extrapolation effects in
Figure 5(a), and the fact that only the results obtained from the smallest grid used so far in
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Figure 3. Computed vorticity contours and velocity vectors, at various Re, for (a,b) vertical flap at Re= 200, 100
respectively and (c,d) square block at Re= 200.

the second computational method are plotted in Figures 6(a), 6(b), the sets of results would
appear to be consistent and accurate.

The above comparison between the computations and the theory in the determination of
x1, x2 in Figure 6(a,b) indicates that there is fairly good quantitative agreement on the sepa-
ration and reattachment positions, from lowish Re values, despite there being only one term,
the leading term, in (4.3), (4.4). Earlier comparisons on separation and reattachment points
for other shapes addressed experimentally by Klebanoff and Tidstrom [15] and numerically
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Figure 3. Continued.

by Bogolepov [16] are noted by Smith and Walton [5], Smith [7]. Even more recent compu-
tational results by Ngo Boumet al. [17] also agree at least qualitatively with the present ones
as regards the trend of the downstream reattachment positionx2 with increasing Re, although
this last paper puts forward an (unjustified) formula different from the present (justified) one
(4.4) and it also overlooks the smaller separation arising upstream, possibly due to lack of
numerical resolution.
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Figure 4. Computed pressure gradients∂p/∂x on the horizontal surfacey = 0 at Re= 100; (a) flap, (b) block.

Returning to the present computations, we note that another point of comparison concerns
the position of maximum surface pressure gradient upstream. The theory according to Fig-
ure 4 of [5] predicts the above position to be approximately twice as far upstream as the
separation positionx1, and the computational results in our Figures 4,5 are reasonably in line
with this at the shown Re values. The whole trend of the surface pressure gradient inferred
from Figure 4 of [5] is also in line with, although somewhat higher than, the results at Re
of 100 in our Figure 4(a,b). There is in addition good qualitative agreement, between the
present computations and the present theory, on the overall flow structure, in particular the
presence of attached or detached thin layers as Re increases. Indeed, an increase in the value
of F(∞) suggested perhaps by the streamline plots of Figure 2 would bring the theoretical
and computational values even closer together; see Figure 6(b). Moreover the behaviour of
the upstream separation pointx1 is clearly in response to the pressure feedback influence from
the presence of the blunt obstacle, which leads in virtually all cases to a streamwise rise in
the horizontal surface pressure ahead of the obstacle, that is, a slight adverse pressure gradient
there. Hence on inviscid reasoning the slight, induced, effective slip velocityuw then falls in
the streamwise direction but this effect is on top of the original incident linear velocity profile
of (2.1e) and so acts near the wall as an increasingdisplacementresponse [that is, of the form
y + uw(x) with uw(x) monotonically decreasing withx]. It is this last response that provokes
the upstream separation and hence specifically the result (4.3). Again theory and computation
appear to be in agreement on the main physics of the separating flow structure here.

6. Further comments

The flow past a blunt obstacle mounted on an otherwise flat surface is intricate as well as
fascinating even in the steady laminar two-dimensional regime. Its accurate determination
seems to be aided considerably by the combination of theory and direct computing, the former
emphasizing the reduced equations of motion that capture the major physics at large Reynolds
numbers whereas the latter address the full equations at reduced Reynolds numbers. The fairly
close agreement between the results of the two as investigated in the previous section would
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Figure 5. Computational results for the horizontal surface shearζ at y = 0 (for Re= 100), and a study on the
influences of the grid sizes. (a) Flap. (b) Block. Results from the separate computational method are also shown
in (a), for grid spacings 0·05, 0·01 (∧,+, respectively).

appear to enhance the value of both. This is especially so in view of the moderate values of
Reynolds number involved in all the comparisons.

Extensions of the work would be interesting on both the direct computational and the theo-
retical sides. An extension to higher blunt obstacles could allow for the effects of interference
from the full velocity profile, acting across the boundary layer, internal flow or other more
global motion. Interesting experimental investigations have been made by Giguère, Dumas
and Lemay [6] on the Gurney flap and its scaling concerning lift-to-drag ratio of an airfoil.
This flap is typically a tiny fence standing normal to the airfoil surface, near the trailing edge,
as in their Figure 1. For a particular airfoil they note that Liebeck earlier found increased lift
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Figure 6. Comparisons, for the vertical flap and the square block. (a, b) Theory and computations for the upstream
separation and downstream reattachment positionsx1, x2 versus Re. (Results from the separate computational
method are included as open circles for the flap case, for the smallest grid used.) In (b) curve (i) is from (4.4) with
F(∞) taken as the obstacle heightf (∞), while (ii) hasF(∞) taken as 1·115f (∞).

and reduced drag for high lift coefficients from the addition of a flap of height 1.25% chord,
and the benefits of the device were maximized with heights between 1% and 2%. Results in
broadly the same vein are given in their Figures 1,2. Although they give the opinion that the
physical mechanism associated with this device is still an open question, the present view is
that it is the pressure-feedback mechanism of Section 4 extended to higher obstacles exactly
as above. Another extension, to unsteady motions, seems desirable in the context of arterial
blood flows for example and likewise concerning the possibility of flow transition. Extending
the work to three-dimensional flows can also be done in principle, some theoretical studies by
Professor S.N. Brown, Mr. N.C. Ovenden and F.T.S. being in progress.
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